Neuroscience eclipses AI

Plan of a person's head in blue, with areas of activation in various colours

… at least in its ambition. The Blue Brain Project is a venture centred at the École Polytechnique Fédérale de Lausanne in Switzerland in collaboration with IBM to create a synthetic brain in hardware and software. The project name references “Deep Blue,” the IBM chess computer that reputedly “beat” reigning champion Garry Kasparov in 1996. According to Blue Brain leader Henry Markram,

As calculation speeds approach and go beyond the petaFLOPS range, it is becoming feasible to make the next series of quantum leaps to simulating networks of neurons, brain regions and, eventually, the whole brain. Turing [“grandfather” of modern computers] may, after all, have provided the means by which to build the brain. (p.153)

Plan of a person's head in blue, with areas of activation in various coloursBlue Brain represents the more extreme ambitions of neuroinformatics, which is the meeting of two strong disciplines, neuroscience and information science, to share approaches, models, data, etc.

Blue Brain’s ambitions remind me of the predictions of roboticist Hans Morevic in the 1980s, of the eventual download of all human knowledge, intelligence and consciousness into networked computers, to create the ultimate mind-meld. The Blue Brain Project is modest by comparison.

In any case, biology seems to be challenging pure computation as providing the means to understanding intelligence, let alone to simulate or reproduce it.

A helpful academic article by Berrar, Sato and Schuster (1910) updates the achievements of artificial intelligence (AI) and the related field of “knowledge engineering,” and positions them within discussions about the human genome project, synthetic biology, artificial neural networks, and neuroscience.

Since the early days of AI in the 1950s, and its flowering in the 1980s, we’ve also seen the development of the World Wide Web, ubiquitous mobile devices, social media, multi-user computer games and immersive environments, massive memory and computational power at low cost, all hinting at palpable augmentations to human intelligence. These media also offer rich databases replete with resource material on which to let loose, or at least to test, AI tools and techniques: resources for automated “learning.”

Computation and augmentation: these are relatively benign terms. Artificial intelligence, machine learning, knowledge engineering: these invoke controversy from many quarters.

Here’s a summary I wrote in the 1990s of some of the objections to AI from a philosophical point of view. This writing came at the sceptical conclusion of a period of experimentation with tools for knowledge engineering in design. The most strident arguments against AI focus on problems with symbolic logic as the basis for understanding cognition, and the idea that intelligence is all in the head.


  • Berrar, D., N. Sato and A. Schuster, ‘Quo Vadis, Artificial Intelligence?’, Advances in Artificial Intelligence, 2010, 1-12.
  • Coyne, R., Designing Information Technology in the Postmodern Age: From Method to Metaphor, Cambridge, Mass.: MIT Press, 1995.
  • Markram, H., ‘The blue brain project’, Nature Reviews, 7, 2006, 153-160.
  • Moravec, H.P., Mind Children: The Future of Robot and Human Intelligence, Cambridge, Mass.: Harvard University Press, 1988.
  • Winograd, T. and F. Flores, Understanding Computers and Cognition: A New Foundation for Design, Reading, Mass.: Addison Wesley, 1986.


  1. Chen Xi says:

    from the development of artificial intelligence(AI), we can easily see that AI has a close relationship with neuroscience. In 1996, IBM artificial intelligence program “Deep Blue” is not real neuroscience AI production. Until 2005, the birth of blue brain opened a new age of AI technique. It means the topic of this blog:”neuroscience eclipses AI”.
    To be honest, some people who know this probable argue that it could destroy human beings by developing biology in AI industry. However, I assert that the argument above is only one aspect of using artificial neural networks. On the other aspect, the program of “Blue Brain” is a method to treat the mental disease, especially for brain damage and memory loss. So the using AI technique has a bright future.

  2. Tianying Chu says:

    “The most strident arguments against AI focus on problems with symbolic logic as the basis for understanding cognition,..” Here, does “symbolic logic” problem refer to the math problem existing between human brain and digital brain or anything else? Because I have heard this problem several times in many forum but now I am still confuse about it. I want to know is there a clear explanation about this problem now?
    In terms of AI, I suppose that it is not a special esoteric science and it is without any mysterious. Actually, it is an application technology that can be widely used so everyone in digital area can consider its application in our design, creation and programming.

Leave a Comment

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.